
DVB-Multicast-Client API-Specification

Date: 17.07.2009

Version: 2.00

Author: Deti Fliegl <fliegl@baycom.de>

This Document describes the API provided by the DVB-Multicast-Client library

Receiver API

Module global functions

Function: int recv_init(char *interface, int port);

Description: Initializes the Multicast IP-Receiver API.

Arguments: interface: name of network interface to operate on, can be empty string

port: port number for IP service, use 23000 for NetCeiver operation

Returns: 0 on success

Function: int recv_exit(void);

Description: Cleanup IP-Receiver API

Arguments: -

Returns: 0 on success

mailto:fliegl@baycom.de

Receiver Handling

Function: recv_info_t *recv_add (void);

Description: Add a new receiver instance

Arguments: -

Returns: A pointer to a receiver instance on success

NULL on error

Function: void recv_del (recv_info_t *receiver);

Description: Delete a receiver instance

Arguments: receiver: Pointer to receiver instance

Returns: -

Function: int register_ts_handler (recv_info_t * receiver, void
*function, void *context);

Description: Register a function for handling TS data

Arguments: receiver: A previously allocated receiver instance

function: A pointer to a function of type int ts_handler(unsigned char

*buffer, size_t len, void *context),

can be NULL to unregister handler

context: A pointer to same data that is being used as context in handler

Returns: 0 on success

Function: int register_ten_handler (recv_info_t * receiver, void
*function, void *context);

Description: Register a function for handling TEN data

Arguments: receiver: A previously allocated receiver instance

function: A pointer to a function of type int ten_handlertra_t *ten,

void *context),

can be NULL to unregister handler

context: A pointer to same data that is being used as context in handler

Returns: 0 on success

Handler Functions

Function: int handle_ts (unsigned char *buffer, size_t len, void
*context)

Description: Handle incoming TS packets

Arguments: buffer: a buffer containing TS packets

len: length of the buffer

context: reference to context data previously registered by

 register_ts_handler

Returns: number of successfully processed bytes (should be len).

Function: int handle_ten (tra_t *ten, void *context)

Description: Handle incoming TEN information

Arguments: ten: structure containing all signal information

context: reference to context data previously registered by

 register_ten_handler

Returns: 0 on success

Tuning

Function: int recv_tune (recv_info_t *receiver, fe_type_t type, int
satpos, dvblo_sec_t *sec, struct dvb_frontend_parameters *fe_parms,
dvb_pid_t *pids);

Description: Tune receiver instance to given parameters

Arguments: receiver: previously allocated receiver instance

type: frontend type (DVB-S: FE_QPSK, DVB-C: FE_QAM, DVB-T: FE_OFDM)

satpos: satellite position for DVB-S in 10th degrees + 1800

Example: 19,2°E = 192 +1800 = 1992

sec: Satellite Equipment Control data for DVB-S operation

When satellite position is given only sec>voltage has to be set to

 SEC_VOLTAGE_13 or SEC_VOLTAGE_18

When no satellite position is given mini_cmd and tone_mode have to be set.

fe_parms: tuning parameters according to linux kernel structure

dvb_frontend_parameters.

For DVB-S a direct transponder frequency in kHz has to be given. If no satellite

position is given a IF frequency can be used.

For DVB-C/T a direct transmitter frequency in Hz has to be given.

pids: a list of PIDs that should be streamed to the receiver.

The list has to be terminated by a pid value of -1.

Returns: 0 on success

PID-Handling

Function: int recv_pid_add (recv_info_t * receiver, dvb_pid_t *pid);

Description: Add a single PID to a receiver instance

Arguments: receiver: previously allocated receiver instance

pid: a single PID to be added.

If no conditional access (CA) is being used set id element of dvb_pid_t

structure to 0. In CA operation id must be set to the PROGRAM_NUMBER (aka
SID) of the corresponding program the PIDs belong to.

Returns: 0 on success

Function: int recv_pid_del (recv_info_t * receiver, int pid);

Description: Remove a single PID from a receiver instance

Arguments: receiver: previously allocated receiver instance

pid: a single PID to be removed.

Returns: 0 on success

Function: int recv_pids (recv_info_t * receiver, dvb_pid_t *pids);

Description: Set a list of PIDs, replacing all existing PIDs

Arguments: receiver: previously allocated receiver instance

pid: a list of PIDs to be added. The list has to be terminated by a pid value of -1.

Returns: 0 on success

Function: int recv_stop (recv_info_t * receiver);

Description: Remove all PIDs from a receiver instance.

Arguments: receiver: previously allocated receiver instance.

Returns: 0 on success.

NetCeiver Discovery

The NetCeiver Discovery is being used to find out which NetCeivers are available with their
individual configuration. The discovery is a background process started by the recv_init
function.

Function: void nc_lock_list (void);

Description: Locks the internal list of active NetCeivers to avoid modification by the discovery
process.

Arguments: -

Returns: -

Function: void nc_unlock_list (void);

Description: Unlocks the internal list of active NetCeivers to allow modification by the
discovery process.

Arguments: -

Returns: -

Function: netceiver_info_list_t *nc_get_list (void);

Description: Returns a pointer to a list of discovered NetCeivers.

Arguments: -

Returns: A list of discovered NetCeivers.

Example code to traverse the available NetCeivers and tuner slots

int n, i;

recv_init (NULL, 0);

netceiver_info_list_t *nc_list = nc_get_list ();

nc_lock_list ();

for (n = 0; n < nc_list>nci_num; n++) {

netceiver_info_t *nci = nc_list>nci + n;

printf ("Found NetCeiver: %s \n", nci>uuid);

for (i = 0; i < nci>tuner_num; i++) {

printf (" Tuner: %s, Type %d\n",

nci>tuner[i].fe_info.name,

nci>tuner[i].fe_info.type);

}

}

nc_unlock_list ();

recv_exit();

MLD Reporter

Function: void mld_client_init (char *intf);

Description: Start optional MLDv2 client to make zapping faster and more reliable

Arguments: intf: name of interface to operate on.

Returns: -

Function: void mld_client_exit (void);

Description: Stop MLDv2 client.

Arguments: -

Returns: -

MMI Client

The MMI Client allows access to the MMI functions of CAMs plugged into a NetCeiver. The
MMI allows interactive dialogs where users can select menu items, enter data or simply get
notified by a text message.

Function: UDPContext *mmi_broadcast_client_init(int port, char
*iface);

Description: Start a client process for receiving MMI broadcasts that are caused by a MMI
session initiated by the CAM. Such a session could be used by the CAM to inform the user of
a program that cannot be decrypted or to ask for a PIN code.

Arguments: interface: name of network interface to operate on, can be empty string

port: port number for IP service, use 23000 for NetCeiver operation, can be 0

Returns: A context structure or NULL if the call failed.

Function: int mmi_poll_for_menu_text(UDPContext *s, mmi_info_t *m,
int timeout);

Description: returns text of MMI session initiated by the CAM and received via broadcast.

Arguments: s a context returned by mmi_broadcast_client_init.

m a pointer to a mmi_info_t data structure which will be filled by the function on
reception of a broadcast message.

timeout a value in ms to wait blocking for a message.

Returns: a value > 0 if a message was received.

Function: void mmi_broadcast_client_exit(UDPContext *s);

Arguments: s a UDPContext previously returned by mmi_broadcast_client_init

Description: End a previously started client process for receiving MMI broadcasts.

Returns: -

Function: int mmi_open_menu_session(char *uuid, char *iface, int
port, int slot);

Description: Opens a user initiated MMI session to a CAM in a NetCeiver given by the UUID
argument.

Arguments: uuid: specifies a NetCeiver by its UUID

iface: name of network interface to operate on, can be empty string

port: port number for IP service, use 23013 for NetCeiver operation, can be 0

slot: use 0 for 1st CAM slot, use 1 for 2nd CAM slot

Returns: A handle to the newly opened MMI session or -1 if the call failed. If t

Function: int mmi_cam_reset(char *uuid, char *intf, int port, int
slot);

Description: Issue a reset on a specific slot of a given NetCeiver.

Arguments: uuid: specifies a NetCeiver by its UUID

intf: name of network interface to operate on, can be empty string

port: port number for IP service, use 23013 for NetCeiver operation, can be 0

slot: use 0 for 1st CAM slot, use 1 for 2nd CAM slot

Returns: 0 on success

Function: int mmi_send_menu_answer(int s, char *buf, int buf_len);

Description: initiates a MMI session when buf_len is 0 or sends text to an already opened
one.

Arguments: s: specifies a previously allocated session context by

mmi_open_menu_session

buf: specifies an ISO 8859-1 coded text buffer

buf_len: sets the length of the text that should be sent to the CAM

Returns: 0 on success

Function: int mmi_get_menu_text(int sockfd, char *buf, int buf_len,
int timeout);

Description: Gets text from a opened MMI session.

Arguments: s: specifies a previously allocated session context by

buf: specifies a buffer to receive a ISO 8859-1 coded text from the CAM

buf_len: sets the size of the buffer

Returns: a value >0 when a message was received.

Function: int mmi_close_menu_session(int handle);

Description: Closes a previously opened MMI session

Arguments: handle: returned by mmi_open_menu_session.

Returns: -

	DVB-Multicast-Client API-Specification
	Receiver API
	Module global functions
	Receiver Handling
	Handler Functions
	Tuning
	PID-Handling
	NetCeiver Discovery
	MLD Reporter
	MMI Client

